Mitochondria-driven changes in leaf NAD status exert a crucial influence on the control of nitrate assimilation and the integration of carbon and nitrogen metabolism.

نویسندگان

  • Christelle Dutilleul
  • Caroline Lelarge
  • Jean-Louis Prioul
  • Rosine De Paepe
  • Christine H Foyer
  • Graham Noctor
چکیده

The Nicotiana sylvestris mutant, CMS, lacks the mitochondrial gene nad7 and functional complex I, and respires using low-affinity NADH (alternative) mitochondrial dehydrogenases. Here, we show that this adjustment of respiratory pathways is associated with a profound modification of foliar carbon-nitrogen balance. CMS leaves are characterized by abundant amino acids compared to either wild-type plants or CMS in which complex I function has been restored by nuclear transformation with the nad7 cDNA. The metabolite profile of CMS leaves is enriched in amino acids with low carbon/nitrogen and depleted in starch and 2-oxoglutarate. Deficiency in 2-oxoglutarate occurred despite increased citrate and malate and higher capacity of key anaplerotic enzymes, notably the mitochondrial NAD-dependent isocitrate dehydrogenase. The accumulation of nitrogen-rich amino acids was not accompanied by increased expression of enzymes involved in nitrogen assimilation. Partitioning of (15)N-nitrate into soluble amines was enhanced in CMS leaf discs compared to wild-type discs, especially in the dark. Analysis of pyridine nucleotides showed that both NAD and NADH were increased by 2-fold in CMS leaves. The growth retardation of CMS relative to the wild type was highly dependent on photoperiod, but at all photoperiod regimes the link between high contents of amino acids and NADH was observed. Together, the data provide strong evidence that (1) NADH availability is a critical factor in influencing the rate of nitrate assimilation and that (2) NAD status plays a crucial role in coordinating ammonia assimilation with the anaplerotic production of carbon skeletons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photosynthesis, Nitrogen Metabolism and Antioxidant Defense System in B-Deficient tea (Camellia sinensis (L.) O. Kuntze) Plants

Response of tea plants to B deficiency was studied in hydroponic medium under environmentally controlled conditions. Plants height, number of leaves and dry matter production of shoot and root were significantly decreased by B deficiency. Concentration of chlorophyll, carotenoids, anthocyanins and flavonoids was not affected by B deficiency in the young leaf, while a significant reduction of Ch...

متن کامل

Stress-Induced Cytokinin Synthesis Increases Drought Tolerance through the Coordinated Regulation of Carbon and Nitrogen Assimilation in Rice1[C][W][OPEN]

The effects of water deficit on carbon and nitrogen metabolism were investigated in flag leaves of wild-type and transgenic rice (Oryza sativa japonica ‘Kitaake’) plants expressing ISOPENTENYLTRANSFERASE (IPT; encoding the enzyme that mediates the rate-limiting step in cytokinin synthesis) under the control of PSARK, a maturationand stress-induced promoter. While the wildtype plants displayed i...

متن کامل

Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice.

The effects of water deficit on carbon and nitrogen metabolism were investigated in flag leaves of wild-type and transgenic rice (Oryza sativa japonica 'Kitaake') plants expressing ISOPENTENYLTRANSFERASE (IPT; encoding the enzyme that mediates the rate-limiting step in cytokinin synthesis) under the control of P(SARK), a maturation- and stress-induced promoter. While the wild-type plants displa...

متن کامل

Steps towards an integrated view of nitrogen metabolism.

This article discusses how nitrate assimilation is integrated with nitrate uptake, with ammonium assimilation and amino acid synthesis, with pH regulation, and with the sugar supply in tobacco leaves. During the first part of the light period, nitrate assimilation exceeds nitrate uptake by 2-fold and ammonium assimilation by 50%, leading to rapid depletion of nitrate and accumulation of ammoniu...

متن کامل

Metabolic profiling reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants.

The role of inorganic nitrogen assimilation in the production of amino acids is one of the most important biochemical processes in plants. For this reason, a detailed broad-range characterization of the metabolic response of tomato (Solanum lycopersicum) leaves to the alteration of nitrate level was performed. Tomato plants were grown hydroponically in liquid culture under three different nitra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 139 1  شماره 

صفحات  -

تاریخ انتشار 2005